A TSK type fuzzy rule based system for stock price prediction
نویسندگان
چکیده
In this paper, a Takagi–Sugeno–Kang (TSK) type Fuzzy Rule Based System is developed for stock price prediction. The TSK fuzzy model applies the technical index as the input variables and the consequent part is a linear combination of the input variables. The fuzzy rule based model is tested on the Taiwan Electronic Shares from the Taiwan Stock Exchange (TSE). Through the intensive experimental tests, the model has successfully forecasted the price variation for stocks from different sectors with accuracy close to 97.6% in TSE index and 98.08% in MediaTek. The results are very encouraging and can be implemented in a real-time trading system for stock price prediction during the trading period. 2006 Elsevier Ltd. All rights reserved.
منابع مشابه
Adapted Neuro-Fuzzy Inference System on indirect approach TSK fuzzy rule base for stock market analysis
Nowadays because of the complicated nature of making decision in stock market and making real-time strategy for buying and selling stock via portfolio selection and maintenance, many research papers has involved stock price prediction issue. Low accuracy resulted by models may increase trade cost such as commission cost in more sequenced buy and sell signals because of insignificant alarms and ...
متن کاملApplication of type-2 neuro-fuzzy modeling in stock price prediction
We present an application of type-2 neuro-fuzzy modeling to stock price prediction based on a given set of training data. Type-2 fuzzy rules can be generated automatically by a self-constructing clustering method and the obtained type-2 fuzzy rules cab be refined by a hybrid learning algorithm. The given training data set is partitioned into clusters through input-similarity and output-similari...
متن کاملDevelopment of an evolutionary fuzzy expert system for estimating future behavior of stock price
The stock market has always been an attractive area for researchers since no method has been found yet to predict the stock price behavior precisely. Due to its high rate of uncertainty and volatility, it carries a higher risk than any other investment area, thus the stock price behavior is difficult to simulation. This paper presents a “data mining-based evolutionary fuzzy expert system” (DEFE...
متن کاملPredicting stock prices on the Tehran Stock Exchange by a new hybridization of Fuzzy Inference System and Fuzzy Imperialist Competitive Algorithm
Investing on the stock exchange, as one of the financial resources, has always been a favorite among many investors. Today, one of the areas, where the prediction is its particular importance issue, is financial area, especially stock exchanges. The main objective of the markets is the future trend prices prediction in order to adopt a suitable strategy for buying or selling. In general, an inv...
متن کاملStock price prediction using the Chaid rule-based algorithm and particle swarm optimization (pso)
Stock prices in each industry are one of the major issues in the stock market. Given the increasing number of shareholders in the stock market and their attention to the price of different stocks in transactions, the prediction of the stock price trend has become significant. Many people use the share price movement process when com-paring different stocks while investing, and also want to pred...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 34 شماره
صفحات -
تاریخ انتشار 2008